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bstract

Profiling and imaging biological specimens using MALDI mass spectrometry has significant potential to contribute to our understanding and
iagnosis of disease. The technique is efficient and high-throughput providing a wealth of data about the biological state of the sample from a very
imple and direct experiment. However, in order for these techniques to be put to use for clinical purposes, the approaches used to process and

nalyze the data must improve. This study examines some of the existing tools to baseline subtract, normalize, align, and remove spectral noise
or MALDI data, comparing the advantages of each. A preferred workflow is presented that can be easily implemented for data in ASCII format.
he advantages of using such an approach are discussed for both molecular profiling and imaging mass spectrometry.
2006 Elsevier B.V. All rights reserved.
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. Introduction

Molecular profiling and imaging experiments performed
irectly on tissue using MALDI mass spectrometry are methods
aining considerable popularity [1–10]. The technique is char-
cterized by a number of valuable and useful features including
inimal sample preparation, ease of use, heightened through-

ut, and cellular specificity. MALDI profiling and imaging has
lready been successfully applied to samples ranging from indi-
idually captured cells [11,12], to intact organs, and whole
nimal sagittal sections [1]. Although a relatively young method,
issue analysis by imaging mass spectrometry (IMS) has been
sed to address a number of clinical questions in cancer [13,14],
eurodegenerative diseases [15–17], organ development [18]

nd the study of drug and metabolite distribution [19–21]. Due
o the variety of applications and the potential of tissue analy-
is by MALDI mass spectrometry to offer solutions directed at
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ifficult problems in diagnostic and prognostic medicine, tissue
rofiling and imaging will continue to be an important topic of
esearch. As the application of these new methodologies mature,
o too must the techniques to analyze the data.

Analysis of MALDI data can be separated into two distinct
teps: (1) pre-processing and (2) processing or statistical anal-
sis. The purpose of pre-processing is to reduce experimental
ariance within the data set, conditioning it for subsequent
tatistical analysis. Raw spectra are conditioned through
he removal of background, normalization of intensity, and
lignment. The analytical goals of profiling experiments
an be two-fold: (1) the classification of samples into two
r more classes such as diseased/non-diseased in order to
etter aid patients’ care [22–24], and (2) the identification of
iomarkers characteristic to each class [13,14]. Identification
f disease specific proteins could yield mechanistic information
s well as potential diagnostic markers or drug targets. The
mportance in recognizing these points is highlighted in recent

omparative analyses of profile spectra [25–31], whereby varied
iostatisticians all reported an accuracy >90% in classifying the
ame profile spectra from either tumor or non-tumor samples.
owever, in identifying which ions were most significant in
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etermining the classifications there was little to no agreement.
nconsistencies such as these are concerning particularly since
hese same ions are primary candidates for further identification
nd study as disease biomarkers. Before undertaking such
n extensive study one would expect stronger agreement as
o which ions are statistically relevant. We feel that many of
hese inconsistencies are related more to differences in the
re-processing of data as opposed to the actual statistical
nalysis imposed. The main point being that the ability to
ccurately classify, or diagnose samples from profile spectra
s an important milestone, and the fact that the accuracy of
uch studies seems to be, in part, independent of the statistical
nalysis method is particularly encouraging.

Although a complete profile analysis protocol involves both
re-processing and the statistical analysis, an optimal pre-
rocessing workflow is the key to obtaining reliable statistical
nalysis of data. Since profile references are not readily available
or method development we synthesized a series of samples for
se as biological models to test different approaches. This pro-
ides us with the ability to independently adjust many sources
f variance, providing a level of quantitative judgment of the
ffectiveness of each algorithm. Further, when these algorithms
re applied to IMS data, which is essentially an ordered array of
rofile spectra, the result is a reduction in the effect of sample
reparation on image quality and lower image noise. We have
isted a set of guidelines along with a comparative discussion

f various methodologies that were examined in devising our
resent workflow (Fig. 1). Here, we have focused on methods
f processing MALDI mass spectrometric data allowing one to
ompare and determine with statistical confidence subtle expres-

t
w
M
m

ig. 1. Mass spectra analysis work flow. The mass spectra are treated to processing
nd peak selection and matching. The data is returned to a table, formatted for statist
s a list of biomarker candidates that are subjected to further validation steps.
ass Spectrometry 260 (2007) 212–221 213

ion differences between two or more data sets. Additionally, the
ame techniques also greatly improve the sensitivity and qual-
ty of mass imaging experiments, thereby overcoming to a great
xtent, current limitations related to tissue specific heterogeneity
nd sample preparation techniques.

. Experimental

.1. Algorithm development and testing

The commercially available software, DataExplorer (Applied
iosystems, Framingham, MA) and ProTS Data (Biodesix,
teamboat Springs, CO.), were used to implement and test base-

ine subtraction methods. Algorithms for normalization were
oded and tested using a combination of MatlabTM, and Visual
asicTM. Peak alignment was performed using ProTS Data. Pro-
essing of image data was performed using custom software
available upon request) integrating automation using all of the
reviously mentioned processes, and exported into a format suit-
ble for viewing in freely available BioMap (Novartis, Basel,
witzerland).

.2. Mass spectrometry

All data were collected using Voyager STR (Applied Biosys-
ems, Framingham, MA) and Bruker Ultraflex II (Bruker Dal-

onics, Billerica, MA) MALDI TOF mass spectrometers. Images
ere collected using a Bruker Autoflex II equipped with the
ALDI Molecular Imager Package. Each instrument was opti-
ized for best resolution on the singly charged Cytochrome

algorithms responsible for the removal of noise, realignment of the m/z scale,
ical analysis using a number of established methods. The result of the analysis
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Table 1
Protein standards (pmol) spiked into mouse liver extracts

Mix 1 Mix 2 Mix 3 Mix 4

Insulin (porcine) 0.238 0.119 0.059 0.024
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ytochrome C 0.95 0.475 0.238 0.095
pomyoglobin 2.375 1.188 0.594 0.238

molecular ion and operated in automatic acquisition mode.
he matrix used for the analysis was sinapinic acid (Fluka)

20 mg/mL in 50% acetonitrile in 0.1% trifluoroacetic acid).

.3. Protein mixtures

Protein standards were used as provided by Sigma. Mouse
iver protein extract was prepared by homogenizing 40 mg of

ouse liver in 1 mL of the solvent, 50% acetonitrile in 0.1%
rifluoroacetic acid. The insoluble pellet was removed by cen-
rifugation. Aliquots of the liver extract were diluted by addition
f equal volumes of a standard protein mixture. The standards
ere spiked into the mouse liver extract to the final concentra-

ions listed in Table 1 which lists the total amount of each protein
tandard (pmol) applied to the MALDI target.

Each of the four solutions was measured using MALDI mass
pectrometry 10 times. Spectra comprised of 1000 shots were
ollected.

.4. MALDI imaging

Brain from a healthy mouse was sectioned to a thickness
f 12 �m (bregma, +2.80 mm) and thaw mounted onto a steel
ALDI target. The sections were washed using 70% ethanol

y immersion for 30 s followed by an additional 30 s in 100%
thanol. The dried samples were then coated with matrix using
ither a spraying device, (TM Sprayer, LEAP Technologies, Car-
orro, NC) or an acoustic matrix ejector (LabCyte Inc., CA). For
pray coating of matrix, three consecutive passes were made,
oating the sample with sinapinic acid matrix (7 mg/mL in 50%
cetonitrile in 0.1% trifluoroacetic acid) with each pass. The
pray coated section was imaged at a resolution of 75 �m, col-
ecting a 50 shot summed spectra at each raster location. Using
he acoustic matrix ejector, discreet matrix deposits (20 mg/mL
inapinic acid in 50% acetonitrile and 0.3% trifluoroacetic acid)
ere placed in a regular array with a spatial resolution of 150 �m
y 150 �m across a rat brain section cut at the level of the frontal
ortex (bregma +2.5 mm). Each matrix spot was sampled 20
imes, summing up a total of 200 spectra at each location. The

atrix was washed off with ethanol after MS acquisition and
he section subjected to a heavy Nissl staining (cresyl violet,
igma–Aldrich). Spectral data were assembled into individual

on images, baselined, and normalized against the total ion cur-

ent using in-house developed software and ProTSData (Biode-
ix, Steamboat Springs, CO). Individual interpolated protein
mages were obtained with the imaging software tool (BioMap,
ovartis), where a single ion species was visualized at the width
f the peak at half-maximum intensity.

a
b
t
u
g

ass Spectrometry 260 (2007) 212–221

.5. Statistical analysis

Whole spectrum analysis was performed as previously
escribed with minor modifications as indicated [32]. Briefly,
ll mass spectra were pre-processed as described above. The
rocessed text files were then imported into a script written
n Matlab to be aligned according to a single mass-to-charge
m/z) column. A standard weighted means averaging (WMA)
lgorithm was then applied [33]. This test is similar to using
non-parametric one-way ANOVA approach (which can also

e used), and presents with similar results; however, we prefer
MA due to a robustness observed with the highly variable

on-Gaussian data found to be common to MALDI based mass
pectra. The weight value (W) is a statistically derived function
hat approaches significance as the distance between the means
or each group increases and the standard deviation decreases
sing the formula W = (μ1 − μ2)/(σ1 + σ2). In this way, m/z
alues were filtered according to the highest weight that best
ifferentiated each group. Finally, only a set of four or more
onsecutive points were considered to be a true peak. These fil-
ered values were then used to determine a level of confidence
or peak detection, and further evaluated by plotting the whole
pectra as compared to the difference spectra in Origin 7.0.

. Results and discussion

Raw MALDI spectra are not amenable to any type of quantita-
ive analysis by direct comparison. Over the course of a typical
tudy, experimental and biological sources of variance can be
anifested in the data. One can expect the variability to increase

s profiling studies expand to include multiple investigators. The
hallenge in developing an effective analysis protocol is to ade-
uately distinguish the different sources of variance so that the
tatistical analysis includes only differences protein expression
n the samples. Extending the general ideas of previous profil-
ng studies, we have developed a pre-processing workflow for
maging MS that incorporates procedures for baseline removal,
ntensity normalization and recalibration/realignment of spectra
34,35].

.1. Baseline subtraction

Profile spectra typically exhibit an intense and variable chem-
cal noise background that must be quantified before accurate

easures of ion intensities can be determined. Example pro-
les acquired from three different tissues are shown in Fig. 2a.
rom these one can visually detect global baseline trends. How-
ver, development of mathematical algorithms that are equally
dept at discerning baselines has not been so straightforward.

number of algorithms have been reported for estimating the
aseline [26,36] and many commercial data analysis software
ackages include baseline subtraction modules. Extending these
lgorithms to image data requires, a) that the algorithm be capa-

le of accommodating a variety of chemical backgrounds similar
o those seen in Fig. 2a with limited or no interaction from the
ser and b) perform within a reasonable time frame. Perhaps the
reatest barrier for anyone developing an algorithm for baseline
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ig. 2. MALDI MS profile spectra acquired from three sections from different ti
oftware.

orrection is the lack of any quantitative evaluation criteria. In
ight of this we have been forced as others have done, to compare
he results by expert visual inspection. While this introduces

degree of subjectivity it underscores the fact that if it was
ossible to generate a baseline model adequate for evaluating
lgorithms then that model in itself would be optimum for base-
ine correction. The first methods examined are ones available
o most investigators, namely the baseline correction functions
ntegrated into the software supplied by the instrument manufac-
urers, DataExplorer and FlexAnalysis, as well as the imaging
tandard BioMap. In the case of DataExplorer, the Advanced
aseline Correction function uses three user-set parameters:
eak width, flexibility and degree which can be iteratively opti-
ized. We found that one set of parameters are usually not ade-

uate for modeling a baseline over the entire m/z range. Rather,
he model generally provides a good estimation of the baseline
or only a narrow m/z window of about 10 kDa. In order to extend
he usefulness of this algorithm we processed each spectrum

ultiple times using correction parameters optimized for differ-
nt m/z regions which were then combined into a final spectrum.

hile this segmented approach improves the results for a wider
/z range it is somewhat cumbersome to implement and can

reate anomalous artifacts in the final spectrum particularly if a
eak spans two region boundaries. A convex hull option in Flex-
nalysis performs well across the full m/z range and requires no
ser input, but this package currently imports only native data
les and as such is not an option for processing data acquired on
ll instruments. Biomap, the de facto standard for imaging MS,
enerates baseline models using values from the first and second
erivatives of each spectrum that meet certain threshold criteria.
hile Biomap is optimized for fast processing it also has signif-

cant limitations. Among these: the inability to export processed
ata sets that can be used with external applications and frequent

ut-of-memory errors when processing large images.

Other techniques for empirically fitting functions to the base-
ine were examined. For example, monotonic decay functions
an be fitted to the spectra and, for a number of spectra, the

i
p

(a) Raw spectra; (b) spectra that have been baseline corrected using ProTSData

odel produces good results, particularly after removing high-
requency noise. However, the variable slope and intensity of the
ackground for many spectra are not necessarily described by
simple decay function as have been shown [26]. Robust local

egression estimation [36] shows very good ability to adapt to
ariable background signals, but the technique is severely dis-
dvantaged with lengthy computational time to process a profile
pectrum of average size, 40–50 s.

Incorporation of the local estimation algorithm in ProTSData
Biodesix, Steamboat Springs, CO) into a batch process has
ielded the most widely applicable approach. The user inputs
series of values that establish expected peak resolution at var-

ous values along the full m/z range. These values are used as
stimators when isolating potential signal components from the
aseline. The method can be applied to a variety of spectra
cquired at different times provided the spectra have similar
esolving power at given m/z values. Fig. 2b presents the results
f baseline correction produced by this function. Because it
mports data in ASCII format it can be applied to data from
ifferent instrument vendors. At first, this may seem an inef-
cient way of processing the thousands of spectra found in a

arge image data but here the ASCII file itself is temporary.
hat is, the batch process sequentially converts each spectrum

n the image to an ASCII file that is processed. The processed
SCII spectrum is then converted back to the more compact
inary Analyze 7.5 format before being deleted. Once the pro-
essing is completed we have only raw and processed image files
long with a record of the baseline modeling criteria for archival.
his approach is flexible for different baseline shapes and can
ccommodate large volumes of data without significantly long
rocessing times, typically ∼1–2 s/spectrum.

.2. Normalization
The next step in spectral pre-processing is to normalize the
on intensities to minimize spectrum-to-spectrum differences in
eak intensity. These variations are derived from a number of
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ources including instrument variation, differences in sample
reparation, sample variability, and experimental error. Within
he confines of a carefully controlled experiment, one is able
o minimize the contribution of each of these sources of error;
owever, more can be done to further reduce the observed vari-
tion. To this end, a number of algorithms were tested for their
bility to reduce measurement variation. Normalization is the
rocess of projecting all data onto a common intensity scale to
acilitate direct comparisons of spectra. Various normalization
outines that have been described in the literature can be cate-
orized according to their methodology which we describe as
ollective and individual [26,31,34,35,37,38]. In the collective
pproach all profile spectra in a data set are processed into a sin-
ular representation or reference against which each spectrum
s then normalized. A basic example of this approach involves
ormalizing each spectrum to the average of all spectra. Indi-
idual normalization differs in that each spectrum is normalized
o some reference independent of the collective data set, and
n example of this method is the scaling of each spectrum to a
onstant ion-current.

The task of isolating components of biological variance from
omponents of experimental variance can be challenging given
hat values of either are unknown and too many profile studies
re inadequately designed. Typically sample populations are too
mall to provide for full statistical treatment of inter- and intra-
ample variances and as a result there is always the possibility
hat experimental differences will be erroneously detected as a
iological difference. Clinical samples are difficult to obtain and
ften in short supply. Realizing this for these cases, the best we

an hope for is to estimate the amount of experimental variance
resent in a data set and use this as threshold for classifying
n observed difference as being either greater than or less than
hat is expected from experimental variance alone. To facilitate

n
t
f
a

ig. 3. The effect of normalization on data quality. (a) Single spectra compared again
omparison made after normalization (TIC) results in a linear relationship. (c) This
oefficients and slope reported in histogram form. Total ion current (TIC) normalizat
he correlation coefficient. (Linest and R2 ∼1.) Linest = regression coefficient of the b
oefficient. (proportion of variance in y attributed to variance in x; least variance = 1.0
ass Spectrometry 260 (2007) 212–221

hese measurements in developing our pre-processing protocol
e generated model sample sets with known biological variabil-

ty to use as test cases.
In a simple example we compared spectra acquired from

eplicate spots deposited from the same sample to establish an
deal case for experimental variance. An aliquot of the mouse
iver homogenate was mixed with sinapinic acid solution and
potted onto 100 sample wells using a 1 �L pipette. Each sample
ell was analyzed operating the mass spectrometer in automated
ode using a constant acquisition method. Under these condi-

ions one would expect that the only source of variance is due
o MALDI processes, i.e., variability in matrix crystallization
nd ion generation. Plotting the log–log of individual spectral
ntensity versus intensity from average spectra shows distinct

isalignment of data from an ideal distribution, i.e., slope = 1.
epeating this plot for each individual spectrum, one can tabu-

ate the estimated slope and R2 for each of the 100 comparisons.
he data were then normalized using either of the following:
ube root, log, or ln transformations; scaling to a constant total
on current; scaling to a constant noise as determined from the
oefficients of wavelet decomposition. The different methods
an be compared in this way to determine which of these meth-
ds are most effective. The results of this comparison are shown
n Fig. 3. When comparing any of the mentioned methods to the
ase where no normalization was applied, one finds that the aver-
ge slope for each spectrum is always approximately 1; however,
he variation is reduced in cases when a normalization routine is
pplied. Only two of these methods yield both high correlation
nd linearity, normalization to total ion current and to constant

oise. The other methods involve some form of mathematical
ransformation such as log, ln, and cube root and are often used
or multivariate data such as microarray analysis to reduce vari-
tion. However, these data sets are often linear over as many as

st the group average deviate significantly from linearity, whereas (b) the same
comparison was repeated for each spectrum individually, and the correlation

ion is the most effective at reducing the deviation from linearity and increasing
est fit line (best fit = 1.0). R2 = square of the Pearson product moment correlation
)
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Fig. 4. Baseline correction and peak binning. A portion of the data before (a),
and after (b) spectral alignment. Spectral alignment is performed using common
peaks across the set of spectra. Peaks are selected that are common to 90% of
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our orders of magnitude; whereas, MALDI mass spectra are
ot. For MALDI spectra, data transformation obscures features,
ausing the sensitivity of the comparison in profiling and the
mage contrast in IMS data to be poor. The remaining data in
his study are processed using the method of total ion current
ormalization.

.3. Spectral realignment

At first glance, one might get the impression that realign-
ent of mass spectra onto a common m/z scale is synonymous
ith calibration. Although these approaches can be the same,

nd in fact, are carried out in much the same manner, there are
mportant differences. With a properly calibrated instrument,
ne might expect 100–200 ppm mass accuracy using a linear
OF instrument to measure proteins. While this remains true,
onsidering this amount of variation throughout the course of a
umber of replicate measurements can cause problems for quan-
itative comparisons. Further, irregularities within the flatness or
hickness of tissue sections magnify the mass measurement vari-
bility. Before performing the comparative analysis it becomes
ecessary to match or bin like peaks into categories to ensure
hat we are comparing the intensity of the same ions across

number of samples. If spectra have internal calibrants (i.e.,
andmarks) that can be recognized as such, then calibrating each
pectrum to those known peaks can effectively realign the spec-
ra. In many cases a sufficient number of peaks may not be
ccurately assigned to known m/z. The approach that we have
aken instead is to identify a subset of peaks common to most if
ot all sample spectra and use these as basis for realigning the
pectra. Using the criteria that a peak must be found in more
han 90% of the spectra, we typically identify 10–20 peaks that
re common to a profile data set. It is also important that these
ommon peaks span the entire mass range of interest to pre-
ent extrapolation outside of the chosen alignment points. These
ommon features are assigned a mass arbitrarily chosen as the
edian value of that peak for the data set, and each spectrum

s realigned using a quadratic calibration algorithm. The results
f such realignment are shown in Fig. 4. The calibrated, but
naligned data on the top shows a large amount of uncertainty
n the m/z dimensions compared to the realigned data. Typically,
ne observes a 5–10-fold reduction in the range of centroid val-
es reported for a single alignment point. This allows one to more
ccurately categorize peaks into like groups. While this process
acilitates peak comparisons across all spectra it is important to
ote that the realignment process can produce inaccurate m/z
ssignments. Once the significant peak differences have been
etermined from the realigned data an accurate m/z assignment
s made from internally calibrated spectra.

There are other methods for the aligning the m/z scale of
ALDI mass spectra. For example, Matlab provides an align-
ent algorithm, msalign, that iteratively shifts the spectrum and

omputes a cross correlation of the spectrum with a theoreti-

al spectrum generated using user provided alignment points.
t was found that this algorithm provides very robust align-
ent; however, the computation time for each spectrum ranges

rom 10–60 s, depending on the amount of data per spectrum.

h
a
o
s

he data collected. These features are used as arbitrary calibrants for a quadratic
alibration of the data. (c) The selected peaks from the data set are categorized
nto bins, grouping peaks originating from the same ion.

lthough this method works well and is widely available, it can-
ot practically be applied to image size data sets.

.4. Effect of pre-processing on data quality

Before blindly applying these processing steps to real-world
ata, we wanted to insure that the effect produced on the data
ade sense both from mass spectrometry and biological points

f view. We synthesized a sample set having known differences
n the levels of known proteins to determine a practical limit
t which we could expect to determine protein differences.
tandard proteins were added to the liver extract mentioned
reviously. These proteins were chosen because they are com-
only used MALDI calibrants and therefore sensitivity is not

n issue and because they did not overlap with ions endogenous
o the liver extract. These ions were added in increasing concen-
rations, ranging over one order of magnitude. It was found that

igher or lower concentrations of spiked proteins could not be
dded without significantly affecting the sensitivity of the extract
r the spiked standards because of ion suppression. The spiked
tandards can only be measured simultaneously with the liver
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Fig. 5. (a) Comparison of the relationship between protein concentration and instrument response for processed and unprocessed data. The unprocessed data shows
a marked deviation from the expected relationship to protein concentration. However, processing the data according to the proposed scheme restores data quality
comparable to the ideal case. The factors that contribute to this deviation include manual sample preparation, MALDI target spotting, and sample acquisition. (b)
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ffect of baseline/noise subtraction to remove chemical noise and the effect of no
ere extracted using a minimum S/N threshold of 3. Each spectrum was comp
10–120 ions originating from the liver extract. The error bars represent 95% c

xtract across a 10-fold dynamic range. Each of these spiked
ixtures was measured 10 times using linear MALDI TOF MS.
he resulting response is shown in Fig. 5. Operator bias, varia-

ion in dried droplet sample preparation, and instrumental vari-
tions, produced strong ion intensity differences that depended
n sample and the location within the matrix spot being interro-
ated using the laser. These differences manifest themselves in
ndividual spectra as variations in overall peaks intensity and the
mount of chemical noise observed in the low molecular weight
egion. Although these effects can be tolerated in a qualitative
tudy such as peptide mass fingerprinting, in MALDI profiling
nd imaging, the quantitative information relates directly to the
ensitivity of the assays and the quality of the images being
enerated. The ion intensity measured as a function of protein
oncentration is displayed in Fig. 5 both before spectral pre-
rocessing and after. The raw data deviates from linearity for
ach of the proteins measured, and the experimental error is quite
arge in the uncorrected data. In contrast, after pre-processing

he data using the approach outline in Fig. 1, the ion intensity is

ore reproducible. This results in lower experimental error and
he ion intensity approaches a linear correlation with protein
oncentration. Data having a more predictable response as

g
F
r
a

zation on spectral quality. Spectra were normalized using TIC. Spectral features
of 5–7 ions originating from the spiked standard proteins and approximately
nce intervals for the intensity.

function of concentration yields more reliable predictive
esults.

.5. Processing of imaging mass spectrometry data

Previous studies have highlighted the need to consider sam-
le preparation as a critical component in developing MALDI
MS applications [4,8,39]. However, in spite of the effort to exert
ontrol over environmental factors affecting matrix applications,
nstrument variation during the course of data collection, and
nherent cellular heterogeneity within the samples themselves,
here is inevitably some contribution of each of these effects
o the image. In much the same way as with profile spectra,
his experimental variability has direct bearing on image qual-
ty and overall ability to visually observe biological changes in
rotein levels. Comparing two single spectra comprising two
ixels of the image, it is often difficult to estimate the amount
f variation between the two; however, when examining a sin-

le mass plotted as an image the differences become obvious.
ig. 6 shows selected ion images collected from two different
egions of mouse brain. The images on the left are unprocessed,
nd represents purely the integrated ion intensity from each
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ig. 6. Baseline subtraction and normalization improve image quality. Two sel
f spectral processing on image quality. Above are compared raw image data (a
on current. The inset in panel (c) presents a photomicrograph of the section us
ippocampus.

pectrum over the peak at m/z 6219 (Fig. 6a) and m/z 14,575
Fig. 6c), respectively. Gross structural features within the tis-
ue are clearly distinguishable; however, they are obscured by a
igh background signal. In this mass range, unprocessed spectra
an have a high amount of background signal due to the contribu-
ions of chemical noise. This effect is for example visible in the
pper corners of the unprocessed image in Fig. 6a away from the
issue edge. The background signal is additionally affected by
ny irregularities in the sample preparation. In the same image,
his is evidenced by the bright stripe of high intensity (white)
unning horizontal across the center of the image. Moreover,
ome of the bright areas in Fig. 6a do not follow the contours of
ny of the tissue features, but rather an area of matrix that is of
reater density due to overlapping passes of the matrix sprayer.
imilar effects are observed in Fig. 6c where tissue features in

he left brain hemisphere are obscured due to similar sample
reparation effects.

Since image data are nothing more than ordered arrays of pro-
le spectra we can apply the pre-processing steps outline in Fig. 1

o markedly increase the quality of images as we have done in

he right panels of Fig. 6 (b and d, respectively). First, the image
ontrast is increased due to the decrease in chemical noise and
ts contribution to the background signal. In Fig. 6b, it becomes

uch more apparent that there is a distinct border of the outside

e
t
r
s

ion images obtained from mouse brain are chosen to highlight the advantages
c) and data processed (b and d) to remove baseline and normalized using total
IMS after matrix removal and Nissl staining. Red arrow, cortex; green arrow,

dge of the tissue. Additionally, two distinct areas of the tis-
ue, the cortex and the hippocampus, stand out as having higher
mounts of this protein. Furthermore, the prominent horizontal
ands of brighter pixels seen in Fig. 6a image are not as promi-
ent in the corresponding processed image. There is noticeable
mprovement in Fig. 6d as well. First, the darker, low intensity
ixels present in the raw image, Fig. 6c, have been enhanced
y the processing to yield a more expected pixel-to-pixel tran-
ition. As a result, features that were only faintly visible before
rocessing are now clearly distinguishable due to the improved
mage contrast.

The individual mass spectra of mass spectrometric images
f tissue having highly compartmentalized and varied protein
xpression are not always possible to align and normalize. When
omparing one part of the tissue to an adjacent position on the
issue composed of different cell types, reduced numbers of com-

on peaks are available as alignment points and changes in the
on currents may be observed. One basic assumption in adopting
otal ion current as a method for normalizing spectra is that the
dentity and abundance of ions across the data set are similar in

ach spectrum. For diverse tissue samples this in not always
he case and for these samples normalizing to total ion cur-
ent shows only modest improvement. Further development of
ample preparation techniques would allow for the inclusion of
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alibration standards in the matrix used for coating tissues. This
ould allow for images of such samples to be aligned more reli-

bly. In spite of these drawbacks, these methods provide obvious
enefits to data quality and have been routinely applied to images
f major organs, such as brain, liver and kidney, with success.

.6. Data quality and sample quality

Although it is beyond the scope of our present discussion it
s important to note that the acquisition and analysis of mass
pectra are but one component of profiling and imaging studies
f tissue sections by MALDI. Before reaching the mass spec-
rometry lab clinical samples have been collected and handled
y people in conditions that are often varied and beyond the con-
rol of the mass spectrometry analyst. A well designed profiling
tudy should include protocols for these portions of a study to
void introducing systematic bias into the profile spectra which
ay be attributed to biological differences when in fact they fall
ithin experimental error. Profiling studies to determine post-

schemic variations of the proteome with time are limited and
s such every effort and consideration should be made to insure
hese are minimized as much as possible. Within the relatively
mall scale of previous profiling studies we can assume that a
imited number of individuals are in the chain of custody and that

inimal variations exist within sample collection and handling.
owever, this will most likely not be the case as the future stud-

es expand to include multiple phases or institutions. No amount
f processing has demonstrated to compensate for high-quality
ata from samples appropriate to address the clinical question
f interest.

Likewise, it is also important to prepare samples for imaging
ith the same rigorous standards. Some of the traditional meth-
ds for sample preparation do not yield the best matrix coating
or tissues, and lack of attention in the way data are collected
nd instrument performance can negatively affect the outcome
f the experiment. New and improved methods for the coating
f samples for imaging which are more automated and stan-
ardized will go far to increase the quality and usefulness of the
ata generated with such techniques. This paper is intended as
starting point for the furthering of IMS using data processing

pproaches.

. Concluding remarks

In summary, we have presented a data processing workflow
hat we have used to successfully increase the amount of useful
nformation that can be derived from mass spectrometry profil-
ng and imaging of biological specimens. The steps necessary
o obtain such improvements were found to be baseline sub-
raction, normalization, and spectral realignment/recalibration.
or the purposes of protein profiling, these methods allow for a
ore accurate determination of the relevant changes in protein

xpression. Furthermore, the application of these methods to the

rocessing of MALDI imaging data allows for improvements in
he contrast of the mass spectrometric image and compensates
or variations in the quality of the matrix coating. The meth-
ds that were highlighted offer some significant improvements,

[

[
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llowing progress that would not otherwise be possible; how-
ver, there were limitations on the amount of time and the type
f expertise that could be brought to bear on the problem. For
ach of the steps highlighted, and each method that was tested,
here are numerous other algorithms that went untried due to
ack of resources and time. Also, the data available for testing is
ver increasing, so the availability of data derived from different
amples and different instruments continues to grow. Likely, the
pproach we outlined will need further refinement for some of
hese special conditions. It is our hope that future extensions of
his work will expand upon the basic framework presented here
or continued development of the fields of molecular profiling
nd imaging mass spectrometry.
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